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Abstract

We propose a model for the synthetic generation of informa-
tion cascades in social media. In our model the information
“memes” propagating in the social network are characterized
by a probability distribution in a topic space, accompanied by
a textual description, i.e., a bag of keywords coherent with
the topic distribution. Similarly, every user of the social me-
dia is described by a vector of interests defined over the same
topic space. Information cascades are governed by the topic
of the meme, its level of virality, the interests of each user,
community pressure, and social influence.

The main technical challenge we face towards our goal is the
generation of realistic interest vectors, given a known net-
work structure and a tunable level of homophily. We tackle
this problem by means of a method based on non-negative
matrix factorization, which is shown experimentally to out-
perform non-trivial baselines based on label propagation and
random-walk-based graph embedding.

As we showcase in our experiments, our model offers a small
set of simple and easily interpretable “knobs” which allow to
study, in vitro, how each set of assumptions affects the result-
ing propagations. Finally, we show how to generate synthetic
cascades that have similar macro-statistics to the real-world
cascades for a dataset containing both the network and the
cascades.

1 Introduction

Modelling information diffusion through social media is an
important task towards understanding the global phenomena
that emerge from the basic mechanisms of human communi-
cation and interactions. Many questions in the field revolve
around critical problems of present society. How can we help
social media users to distinguish misinformation from le-
git news as they propagate? (Vosoughi, Roy, and Aral 2018)
How interactions on social media affect opinion formation
and dynamics? What is the role played by social bots in
tampering political debates on social media (Ferrara et al.
2016)? How is it that small initial shocks can cascade to
affect a large system, such as a communication network?
(Watts 2002) These questions — often studied also in the
context of viral marketing (Richardson and Domingos 2002;
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Bonchi 2011; Aslay et al. 2015) — have became central
to our understanding of historical transformations of our
times (Lane 2011).

The analysis of information cascades in social media re-
volves around two main themes: communication and its so-
cial network substrate. On the one hand, the network topol-
ogy has proved itself to be an important factor that affects
the information diffusion (Weng et al. ; Weng, Menczer,
and Ahn 2014), and it can be described by several macro-
scopic characteristics, e.g., the level of homophily (Yuan,
Alabdulkareem, and others 2018) (Weng, Menczer, and Ahn
2014) or the modular structure of the network (Barbieri,
Bonchi, and Manco 2013a; Mehmood et al. 2013), as well
as node-level characteristics, such as e.g., their centrality,
or their capacity of spanning structural holes, thus bridg-
ing communities and facilitating, or blocking, the spread
of information. On the other hand, the study of the diffu-
sion processes happening over the network allows to analyse
phenomena such as, e.g., the level of virality of the memes
which are propagating, theirs topics, or their polarity (e.g.,
on a controversial debate), or if the propagation is driven by
influential nodes or by group pressure. All these parts inter-
operate together in a complex way. Viewing them as parts
of a single system allows us to ask ourselves new questions.
Are influential nodes influential on all topics? Is propaga-
tion of highly viral items encouraged or discouraged by the
presence of echo chambers?

The ingredients at play here are many: the structure of the
social networks, the interests of each individual (which can
exhibit more or less homophily w.r.t. the structure of the net-
work), the strength of influence that nodes can exert on their
peers, the items that propagate in the network, described ex-
plicitly by their bag-of-words representation or implicitly by
their topic distribution. Having such richness of data from
real-world interactions is not always easy or possible, due
to the proprietary nature of social media data and to privacy
regulations. Thus the driving research question we address
in this work is the following: can we devise a model able to
coherently describe all these ingredients and use it to gener-
ate realistic information cascades?

Besides the obvious benefits (i.e., availability, size con-
trol, no privacy issues) synthetic data generation allows to
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Figure 1: Bird’s-eye view of WOMG: given a social network
and a topic model, WOMG generates a database of propaga-
tion cascades.

study, in vitro, specific phenomena of interest by controlling
the parameters of the model: e.g., having a more or less ho-
mophilic network, having a larger or smaller role of social
influence in driving the cascades, and so on.

Overview of the model. Our model, dubbed WoMG (for
Word-of-Mouth Generator), takes as input:

(I1) adirected social graph structure G = (V, E), and

(I2) a topic model, as the one produced by running any
topic-modeling algorithm (e.g. Latent Dirichlet Alloca-
tion (LDA) (Blei, Ng, and Jordan 2003)) on a corpus of
documents.

Let k be the number of topics. Each node gets labelled by
WOoMG with a k-dimensional vector representing how much
it is interested in each topic. Similarly, each item that prop-
agates in the network is described by a probability distribu-
tion on the topic-space. Besides its topic-distribution, each
item will also have some content: i.e., a bag of keywords
generated using the topic model. Alternatively, one can use
real-world documents (as the ones in the corpus that gener-
ated the topic model) and feed them to the social network.

When a new item enters in the network, it starts propagat-
ing: nodes can activate on it based on their interests. Once
a node wu activates on the item (i.e., they like or repost the
item), their followers become aware of the item and based on
their interests and w’s strength of influence, they might acti-
vate and propagate the item further. Such contagion process
is governed by several parameters, such as, e.g., the level of
virality of the item. The output of this process includes the
following elements:

(O1) the vector of interests for each node v € V;

(O2) a set of items I, where each item ¢ € I is described
by a bag-of-words and a distribution in the topic space;

(O3) apropagation trace for each item ¢ € I, where a prop-
agation trace is a relation (7, v, t) representing the fact that
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the item ¢ was adopted by node v at time ¢.

Figure 1 provides a bird’s-eye view of WOMG. A more
formal and detailed description of our model is instead pro-
vided in Section 3.

Challenges. A key role in the topic-aware propagation
model is played by the interests of each individual. The main
technical challenge we had to solve is that of generating re-
alistic interest vectors, given a known network structure. It
is well known, in fact, that links in a social network are often
shaped by homophily (McPherson, Smith-Lovin, and Cook
2001). Therefore, we need a way to generate vectors that
respect this property — otherwise, any propagation model
would fail to achieve sensible results. However, it has also
been proved that the level of homophily is different among
different networks (Bisgin, Agarwal, and Xu 2012). For this
reason, we also wish for our method to achieve a funable
level of homophily in the generated interest vectors.

We tackle this problem by means of a method based
on non-negative matrix factorization, which is shown ex-
perimentally to outperform non-trivial baselines: a method
based on a simple iterative algorithm that exploits com-
munity structure, i.e., label propagation (Zhu and Ghahra-
mani 2002), and one exploiting recent advances in random-
walk-based graph embeddings, in particular using the
node2vec (Grover and Leskovec 2016) method.

Beside interests, we needed to identify which others fac-
tor are important in shaping propagations in a multi-topic
setting, and how to connect them. For instance: how to gen-
erate consistently the virality of the items, the influence ca-
pability of each node, or how to generate initial activations.
For each of those choices, we devised different configura-
tions of the model.

Combining these configurations with the tunable levels of
homophily and the other key parameters we identify, we ob-
tain a small set of simple and easily interpretable “knobs”
to adjust the behavior of our generator. In this way, we are
able to easily turn those knobs in order to study how each set
of assumptions affects the resulting propagations. We found
out, in fact, that there is a significant intertwining between
these factors: for instance, the effect of virality on propa-
gation dynamics is different depending on how items are
introduced in the social network. Moreover, if nodes have
different capabilities of influencing their peers, the presence
or absence of echo chambers heavily affects the spread of
highly viral content. We report our findings in the experi-
mental section.

Roadmap. Next section briefly survey related literature.
Section 3 describe in details WOMG. Section 4 discusses
our solutions for the technical challenge of generating real-
istic interest vectors, given a known network structure and a
tunable level of homophily. Finally, Section 5 presents our
experimental findings.

2 Related Work

Studying how information propagates through a society has
been a key question since the early days of social science.
With the advent of the Web, and in particular with the rise of



social media, it has been possible to evaluate existing soci-
ological theories on large scale real data, while many new
questions have arisen about how information propagates
on social media specifically. Gonzdlez-Bailén et al. (2011)
studied the spread of protest movements in the Twitter net-
work, finding evidence of social influence and complex con-
tagion. In particular, they validated threshold models, by
reproducing observed real behavior. Borge-Holthoefer and
Moreno (2012) instead used a simulated, generative model
to identify influential nodes. They find that the spreading ca-
pabilities of the nodes do not depend on their topological
property (specifically, on their coreness).

A key question in many works is to clarify the relation-
ship between social influence and homophily. When two
friends propagate the same content, is it because they in-
fluenced each other, or because they appreciate similar con-
tent? Anagnostopoulos, Kumar, and Mahdian (2008) built
a model that separates between social influence and ho-
mophily. They applied it to a data set collected from Flickr,
and they found that information propagation on that web ser-
vice is more likely to be caused by homophily than by so-
cial influence. On the same topic, Bakshy et al. (2012) con-
ducted a large scale field experiment at Facebook using their
users as test subjects. They report that not only social influ-
ence play a significant role, but that weak ties often help in
spreading information that would not have otherwise spread,
in particular for less viral content. Goyal, Bonchi, and Lak-
shmanan (2010) found, again on the Flickr data set, that by
assuming social influence between individuals it is possible
to predict several micro-level patterns of the cascades with
high accuracy.

Many other works tried to approach information propa-
gation as a prediction or inference task. For instance, Adar
and Adamic (2005) reconstructed the path of individual
cascades across political blogs. Goyal, Bonchi, and Laksh-
manan (2011) and Cheng et al. (2014) tried to predict cas-
cade size from initial characteristics of the cascade.

Plenty of efforts have been devoted to the characteriza-
tion of information cascades and understanding which fac-
tors shape them. In (Cheng et al. 2016), authors studied the
recurrence in time of content shared on social network. They
found that homophily in some cases help content propagate
at the beginning; but it may result then “in the content get-
ting trapped in a local part of the network™, thus explaining
the emergence of echo chambers. They also find that con-
tent virality and network homophily are closely related, and
that they are both driving factors shaping the information
cascades. Their view on homophily is consistent with the
findings of Sasahara et al. (2019). In this work, authors mod-
eled and simulated the evolution of the topology of a social
network. They find out that, even with minimal amounts of
influence and unfriending, the network develops into segre-
gated communities of similar nodes (i.e., echo chambers).

While many of the previous study focused on prediction
and real data experiments, some studies in information prop-
agation tried to explain observed patterns through genera-
tive models and simulations. In (Gleeson et al. 2014), au-
thors compare different assumptions on the dynamics of the
spreading by simulating a set of agents and observing their
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behavior. This type of analysis has been giving interesting
results in related research fields, from classical examples
such as the segregation model (Schelling 1969) to novel re-
sults on opinion dynamics (Del Vicario et al. 2017). Beside
allowing to study in vitro the behavior of agents, generative
models allow to build data sets that can be used as test bed
for prediction tasks or inference algorithms. For instance,
benchmark graphs (Lancichinetti, Fortunato, and Radicchi
2008) have been recognized as an important assessment for
community detection algorithms.

3 Model

In this section we describe in details our model which builds
on top of the Topic-aware Linear Threshold Model intro-
duced in (Barbieri, Bonchi, and Manco 2013b). Such topic-
aware influence propagation model stems from three main
assumptions: (7) nodes have different interests, (i7) items
have different topics, (ii7) similar items are likely to acti-
vate similar nodes. These assumptions describe a propaga-
tion cascade through social influence, dependent on the top-
ics of each item and the interests of each node.

We consider a directed social graph G = (V, E') where
the nodes V represent the set of individuals involved in the
social network, and a directed link (u, v) € E represents the
fact that v is a follower of u. As such, v receives is her time-
line the bits of information shared by v and can be influenced
by w to share further, thus allowing the propagation of infor-
mation. We denote with N (u) C V the out-neighborhood
of node u, i.e., the set of followers of u. Let k be the number
of topics under consideration. Each node u € V' is labeled
with a vector of interests t, € R¥. The quantity ¢, , > 0
represents how much node w is interested in topic z.

We also have a set I of items that propagate over the social
network. Each item ¢ € I is represented by a k-dimensional
vector 7;, that is a probability distribution over topics, i.e.,

k
d =1,
z=1

where 7y represents how much item ¢ is of topic z. An item
is also defined by a positive scalar that represents its propen-
sity to propagate, which we denote as virality v;.

At time ¢, a node u receives a social pressure W} (u) to
activate on item i:

k
Wi(u) = (1)
z=1

VY Do

vEF;(u,t)
where
® D, . - is the pressure exerted by v on v on topic z;

e F;(u,t) is the set of nodes already active on ¢ at time ¢
and that have u as follower:

Fi(u,t) ={v e V|(v,u) € EANi € Di(v)}

where D;(v) is the set of items adopted by v at time ¢.

Since it is a linear threshold model, activations happen
when this pressure W/ (u) exceeds a threshold. In our model,



the threshold is item-specific: it is the inverse of the virality
of the item times a global constant r. Therefore, u activates
when W} (u) > o~ This implies that items with higher vi-
rality v; are more easily adopted and thus propagate more; at
the same time, if r is higher the propagation encounter more
resistance.

Social pressure. In Equation 1 the social pressure experi-
enced by w to activate on item ¢ depends on the set of other
nodes, followed by u, which already activated on item 7. As
different individuals might have different level of influence
on their followers we define

= tu,z + pu - tv,z

where p, is a positive scalar representing the capability of
node v to influence other nodes. Therefore p, .. depends
on how much u is interested in topic z (i.e., ¢, ;), the over-
all strength of influence of v (i.e., p,), and how much v is
interested in topic z (i.e., ¢y 2).

In this setting we can consider two different configura-
tions:

Pv,u,z

e propagation by interest only: this is obtained by forcing
pv = 0,Yv € V, that is to say that a node will activate
on a certain item only based on its interests on the item
topics, and the number of neighbors that already activated;

e propagation by influence: this is the general case with
py > 0,Vv € V, where a node will activate more eas-
ily when the item has been adopted by highly-influential
neighbors.

Initial activations. The propagation model requires a set of
nodes being active on an item ¢ € [ at time zero. We assume
two possible mechanism to account for this:

e FEndogenous activation. Each item is introduced by one
specific node inside the network. Specifically, given an
item with topic distribution ~y;, we assign it to the closest
node in the network based on its interests:

U = arg max y; t,
u

e Exogenous activation. Alternatively, we can think of
items as something that is generated outside the network
and not by one of its nodes. In this case, we model the ex-
ternal environment as one dummy node which is followed
by every other node v € V. Then, the set of initial acti-
vators is a natural consequence of the propagation model
described above.

Generating items. We next describe how WoMG gener-
ates items—their level of virality and their topic distribution.
Based on observations of real-world cascades, we generate
virality levels by a power-law Pareto distribution with expo-
nent A with the following probability density:

A
(U)ZW

(@)

The exponent A determines how likely it is to generate items
with a high virality, and it is called virality exponent.

To generate the topic distribution of items 7 € I we use
LDA as a purely generative model and therefore generate
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Parameter Explanation

k Number of topics.

G = (V,E) Directed social graph.

t, Interest vector of node w.

Pu Influence capability of u.

Y Topic distribution of item 4.

v; Virality of item <.

r Virality resistance.

DPo,u,z Strength of influence by v on u on topic z.
W (u) Pressure on node w at time ¢ for item 4.

Table 1: Variables of the model.

v; from a Dirichlet distribution with parameter « (the prior
topic distribution). Note that the integration with LDA im-
plies that, having a pre-trained LDA topic model (i.e., each
topic is in turn defined by a distribution over a vocabulary
of terms) we can easily generate also textual content, more
precisely a bag of words, for each item ¢ € I by sampling
from the topic model according to the same v; we use for
propagations.
Table 1 summarizes the key parameters and notation.

4 Generating Interest Vectors

In the propagation model described in the previous section, a
key role is played by the interest vector of each node. In this
section we discuss how to generate realistic interest vectors,
given a known network structure and w.r.t. a tunable level of
homophily. Our goal is two-folded: first, to generate interest
vectors exhibiting realistic level of homophily; second, to
be able to tune the level of homophily, in order to simulate
different scenarios. This is the main technical challenge of
our work.

4.1 Defining homophily

Traditionally, homophily is defined in terms of a single at-
tribute (McPherson, Smith-Lovin, and Cook 2001), e.g. gen-
der, ethnicity, age, etc. and it is measured as the number
of outbound ties with users who share similar attribute val-
ues, divided by the overall number of outbound ties (Bisgin,
Agarwal, and Xu 2012).

In our context, as we deal with a vector of continu-
ous values, i.e., our definition of interests t, we define ho-
mophily as the ratio between the average similarity among
connected nodes and the average similarity among discon-
nected nodes. Since the similarity we wish to measure is
based on continous-valued interest vectors, we choose to use
the cosine similarity.

More formally, we define a metric measuring how much a
given pair network-vectors (G, t) is homophilic — that is, the
extent to which the vectors t are similar among linked nodes
and dissimilar in others. Let us consider the set of edges I
and non-edges E = (V x V'\ E). Then, we need a measure
of similarity between nodes § : V' x V' — [0, 1].

ty -ty

o(u,v) = ———
[tullllto]

3)



Hence, our homophily metric will be given by

_ ‘E| ’ Zu,vEE 6(u7 U)
‘E| : Zu)vef 6(“7 U)

Since our vectors will be non-negative, this measure
ranges in [0, co]. In particular, when there is no homophily,
hs(E, E) 1, and the average similarity between nodes
that have edges in E is the same as in E. If hs(E, E) > 1,
we are in the presence of homophily, which might be ar-
bitrarily large, depending on the characteristics of the net-
work. When hs(E, E) < 1, then similarity in non-edges is
higher than similarity among connected nodes, and we enter
the regimen of heterophily, which is not interesting for our
purposes.

We next describe a method which is able to generate dif-
ferent level of homophily. First, we show how to achieve
maximum levels of homophily, then we show how our
method can generate interest vectors that go from minimum
to maximum homophily.

hs(E, E)

“

4.2 Maximizing homophily

To generate a set of interest vectors t,, € T that maximizes
homophily according to the measure defined in Eq. 4, we
need to have a combination of high 6 (u,v) if (u,v) € E,
and small §(u, v) if (u,v) € E. Assuming that all vectors in
T are normalized, and A is the adjacency matrix of GG, then
the homophily metric defined in Eq. 4 can be defined as:

|A x TTT|,
(1 —A) x TTT|

where ||| is the L; norm that in this case corresponds
to the sum of all matrix elements. The value of this metric
can be maximized by ensuring that TTT = A. This can be
solved through a symmetric non-negative matrix factoriza-
tion (NMF) scheme (Lee and Seung 2001), where we mini-
mize the following expression:

&)

min A — TTT|, ©6)
where ||||% is the Frobenius norm, subject to the constraint
that the values in T must be nonnegative.

Through this optimization problem, we ensure that the
similarity among connected nodes A x TTT is maximized
(by approximating their values to 1), and the similarity
among disconnected nodes (1 — A) x TTT is minimized
(by approximating their values to 0). However, in Eq. 5, the
similarity among connected nodes has the same weight as
the similarity among disconnected nodes, while in Eq. 6, if
the number of edges in £ is much smaller than the number
of elements in &2 — which is the case for most real networks
— the NMF optimization of Eq. 6 will give more weight to
disconnected nodes (zero values in A).

To balance the weights of connected and disconnected
nodes, we increase the number of non-zero values in the
factorized matrix with the following approach: In addition
to the first-order proximity edges represented in A, we con-
sider also the second-order proximity (Tang et al. 2015;
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Wang et al. 2017), defined as the cosine similarity of the
rows of the adjacency matrix:

A, A,
[Awul[l| Al
The second-order proximity matrix captures the amount of
neighbors shared by each pair of nodes. Then, to compute

the |V| x k matrix T, a combination of A and S is used as
input to the following NMF minimization problem:

Sij= (7

®)

where ||||% is the Frobenius norm, subject to the constraint
that the values in T must be nonnegative. R is a random
matrix drawn uniformly in [0, 1]; finally, n is a parameter
that controls the weight of second-order connections and (3
controls the degree of randomness to add in order to tune
the level of homophily represented in T. With 3 very large,
the random matrix R will dominate as input to the NMF,
so the resulting homophily value hs(E, E') is minimal. Both
7 and B can be modulated to tune the level of homophily
and to create interest vectors that exhibit realistic cascading
properties. The nonnegative factorization is achieved using
the projected gradient method with sparseness constraints,
as described in (Lin 2007; Hoyer 2004).

min | A + 7S + SR — TTT| .,

4.3 Other Methods

We also experimented with other methods for generating in-
terest vectors: methods based on label propagation (Zhu and
Ghahramani 2002), and node embedding methods, namely
Node2vec (Grover and Leskovec 2016). However, since
these baselines are not aimed to maximize homophily, the
level of homophily achieved by them are not comparable
to the factorization approach. In the next we define each of
these alternative methods, and we report results in Section 5.

Label propagation. The Continuous Label Propagation
Algorithm (CLPA) is an intuitive approach to assign similar
interest vectors to nodes that are connected. We achieve this
goal through an iterative method with the following steps:

1. Select a distribution D to assign interests vectors to each
node (e.g. a Dirichlet distribution). Initialize the vector of
interests t,, € R* of each node v with a sample from D.
Vectors are normalized, since they are selected from D.

2. Select from V' a set of m “influencers”, M. For this we
use a simple greedy heuristic approximating the set of
m nodes that are maximally far from each other, thus
avoiding influencers that are close to each other. We start
adding a random node to M, and greedily keep adding
one node with the maximum shortest-path distance to all
nodes already in M, until we reach the prefixed size m.

3. For a given number of iterations, propagate the interests
of each node u to their neighbors v. In each iteration, for
each node u € G, we update the interest of a neighbor v
in the topic z as follows:

t'u,z + atu,z

= T ©)
Z/{;{ thc + atu,k

tv,z



where « is:

0 ifveM
001 ifv¢g MAug¢ M
0.5 ifvgMAueM

(10)

o =

The denominator in Eq. 9 is just for normalization, and
the values of « are chosen in such a way that influencers
can change significantly the interests of their neighbors and
never change their own interests, while the other nodes have
a much smaller impact on their neighbors interests.

The parameters of this method are the number m of influ-
encers and the number of iterations in Step 3. The different
values assigned to a have lesser impact, but with smaller
values, a higher number of iterations is needed to converge
to the same degree of homophily, while larger values make
the convergence unstable. With the given values for «, a
low number of iterations results in lower homophily, and
vice-versa, a high number of iterations results in higher ho-
mophily. The number of influencers has an impact in the
converged homophily value, as discussed in Session 5.

Node2vec. Node2vec (Grover and Leskovec 2016) is a
semi-supervised method which learns continuous feature
representations in a k-dimensional subspace for nodes in
a network, using second order random walks (Perozzi,
Al-Rfou, and Skiena 2014). The random walk on a non-
weighted graph is defined as follows. Consider a walk that
just crossed edge t — v; then, the probability of crossing the
edge v — x is:

1/p ifdy =0
Tow =41  ifdy =1 (11)
1/q ifdy =2

where d;,, is the shortest path distance between node ¢ and .
Its parameters control depth and breadth of the walk, in par-
ticular: p controls the probability of immediately revisiting
a node in the walk; ¢ allows the walk to move further away
from node t. Noise-contrastive estimation (NCE) (Mnih and
Kavukcuoglu 2013) is then used to learn vectors that allow
to distinguish between such random walks and random sets
of nodes.

We modified the cost function of the algorithm in order
to better suit our needs. First, since our goal is to generate
interests, we want the embeddings to be non-negative, for in-
terpretability. Second, we wish to be able to control the dis-
tribution of the resulting vectors. We solve these problems
by introducing two additive terms in the loss function. For
the former, we add a penalty factor if the embeddings are
negative; for the latter, a KL-divergence term with a prior
distribution to avoid components entanglement (Higgins et
al. 2017). Hence, defining T as the |V'| x k matrix of inter-
ests we want to generate, the new loss function is

L(T) = J(T) + s(/| = min(0, T)[|) + 5 - D (P(T)]|7)

where J(T) is the NCE loss, s is the soft sign function Iw\%’

P(0) is the observed distribution of the embeddings and 7
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is the prior distribution. We empirically tested several prior
distributions and parameters, and we found the best results
using a symmetric Beta distribution.

5 Experimental Assessment

In the previous sections, we presented WOMG our model
for generating realistic interest-driven propagations, starting
from a network structure and a topic model. WoMG is de-
veloped as a free, open-source, Python 3 library.! The soft-
ware architecture is characterized by a division in blocks
implemented using abstract classes. This architecture, to-
gether with the compatibility with other standard libraries,
such as e.g., NetworkX?, makes the library easily extensi-
ble, for instance, by implementing other propagation mod-
els. The library is available to the research community to be
used both for generating synthetic datasets to test inference
or prediction tasks on propagation data; but also as a basis
for studying, in vitro, how different conditions result in dif-
ferent propagations, allowing users to implement their own
assumptions into the model.

The tunability of the model is therefore of primary impor-
tance: in order to adapt to different real scenarios, the model
needs to be able to generate datasets with different character-
istics by controlling a small set of “knobs”, in a way that can
lead to predictable results. For instance, a user of WoMG
might want to simulate a propagation dataset where (i) the
level of homophily is low, and (ii) each cascade propagates
in depth w.r.t. to its starting location. Our goal is to allow
such a user to generate this scenario by tuning a small set of
interpretable hyper-parameters.

To asses these abstract goals, we formalize three research
questions to be explored in this section:

e Q1: Can we obtain both low and high levels of homophily
(w.r.t. the interest vectors of the nodes) through a control-
lable parameter?

e (Q2: Is there a small set of interpretable hyper-parameters
that can tune the macroscopic characteristics of the gen-
erated data?

e Q3: Can the model generate propagations from a given
real network that are similar in shape to real cascades?

5.1 Generating interests

In many contexts, connected nodes can be very similar in
their interests. In other kinds of networks, instead, there is no
significant difference between connected or random pairs of
nodes. We wish to be able to generate both scenarios through
a single parameter that controls the generation of interests in
our model. In other words, we want to obtain a high or a
low homophily depending on a given parameter. Therefore,
our goal is to find whether one of the presented techniques
is able to obtain both low and high levels of homophily, in a
simple and controllable way.

We evaluate the results of the methods mentioned in Sec-
tion 4 with the metric defined in Equation 4.

"https://github.com/FedericoCinus/WoMG
*https://networkx.github.io/
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map is the average of 10 realizations.

In the next, we show to which extent the parameters
of each presented method allow to tune the resulting ho-
mophily. For each method (CLPA, node2vec and NMF)
we vary their parameters to understand their relationship
with the observed homophily, and compare the range of
homophily that is achieved by each method. Finally, we
choose the method with wider range, and define a param-
eter H € [0, 1] that ranges from a minimum to a maximum
homophily.

To measure results, we generated a graph according to a
generative model from (Klemm and Eguiluz 2002), that is
able to generate graphs with high clustering coefficient and
scale free degree distribution, two common characteristics
of real networks. We set the graph to N = 200 nodes and
M = 400 edges, a probability ;x = 0.01 of rewiring and we
set the number of topics & = 10. Then, we tested the three
methods by generating vectors from each one according to
different parameters. For each combination of parameters,
we generated ten experiments and took the average of the
homophily metric we defined.

CLPA. For CLPA, we vary the fraction of nodes selected
as influencers and the number of steps. We show the re-
sulting homophily in Figure 2(a). Starting from a minimum
number of two influencers (1% of 200 nodes), we observe
that higher fractions result in higher homophily. It starts de-
creasing again when more than 25% of nodes are selected
as influencers, due to the high fraction of nodes with fixed
interests. Homophily also increases with a larger number
of steps, clearly saturating after a certain number of steps.
The average maximum homophily in 10 realizations is 2.15,
achieved by fixing he fraction of influencers to 12.5% and
the number of steps to 105, as shown in Figure 2(a).

Node2vec. For node2vec, we vary p and g, the parameters of
the node2vec algorithm that define how breadth-first or how
depth-first the random walks are. We chose to vary both in
a wide scale from 0.05 to 50 — unusual for this algorithm
— to search for variability in terms of observed homophily.
We present the results in Figure 2(b). We observe that the
range of homophily values for all combinations of p and ¢
is very narrow: from a minimum of 1.08 to a maximum of
1.14. Also there is no clear trend in the level of homophily
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when varying p and ¢, although combinations of high ¢ and
low p tend to produce higher levels of homophily than com-
binations of high p and low q. Intuitively, when ¢ is high and
p is low, the random walks tend to involve a small commu-
nity instead of exploring the whole network, and thus nodes
belonging in the same community are more likely to be as-
signed similar interests.

Matrix factorization. For NMF method, we vary 1 and f3,
the coefficients of the two matrix that are summed to the ad-
jacency matrix. While 7 defines the amount of higher-order
paths and thus its effect is dependent on the specific net-
work, the effect of 3 is very clear and allows to tune from
randomness to homophilic vectors.

We present results in Figure 2(c). The behavior of [ is as
we expected, and allows to diminish the high amount of ho-
mophily that this method can generate. Instead the behavior
of n is less clear, and we found that its effect might be differ-
ent depending on the specific network under consideration.

We observe that the range of homophily levels achieved
through this method is wider in comparison to the other
two: a maximum of 4.2, against 2.15 using CLPA and 1.14
using Node2vec. With the right choices of 7 and §, this
method allows for a better tunability of homophily to gen-
erate interests vectors. To tune the level of homophily us-
ing a single parameter, we reduce the parameter space to a
single parameter H € [0, 1]. Therefore, to define H, we fix
1 = 8 and we define a linear dependence on [3; specifically,
8 =16—15.875H. With H = 0 we achieve the lowest level
of homophily, and with H = 1 the highest level.

5.2 Parameters analysis

We have defined a method for generating interests vector
from a given network with a tunable parameter . Now that
we have fully defined our model, we turn to our second ques-
tion: is there a small set of interpretable hyper-parameters
that can tune the macroscopic characteristics of the gener-
ated data? In this subsection, we explore the range of prop-
erties for the synthetic propagation data that the model can
generate, understanding more of their relationship with the
input hyper-parameters.

We explore this relationship in the different configurations
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we presented in Section 3. Each configuration represents a
set of assumptions on the propagation dynamics. We have
two binary distinctions.

The first distinction is on the initial condition for each
propagation. As discussed in Section 3, we have two differ-
ent settings for initial activations. In the first one (endoge-
nous activation) each item is initially created by one specific
node in the network (the most interested one); in the sec-
ond one (exogenous activation) each nodes receive the same
stimulus at the beginning, and therefore each item is initially
adopted by all the nodes sufficiently interested.

The second distinction represents whether the strength of
influence is the same regardless of the spreader, or if dif-
ferent nodes have different influencing capabilities. In one
case (propagation by interest, p, ... = 4 .), the propaga-
tion is guided only by the interests of the receiver. In the
other (propagation by influence, py > = tu,. + pov - to,2),
the propagation is guided both by the interests of the receiver
and by the influencing capabilities of the spreader.

From these two binary choices, we obtain four different
configurations for our model. Each configuration describe a
different set of assumptions on the data. For instance, on the
retweet network of Twitter, the initial activation must be rep-
resented as endogenous, since one node inside the network
will be the single initial adopter.

Inside each configuration, we have two hyper-parameters
to tune the properties of the generated cascades. The first
parameter H controls the homophily of interests, defined in
Section 4. The second one r (virality-resistance) controls the
magnitude of the threshold and so the general resistance to
propagation.
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Observed propagation properties. Our goal is to show that
by changing the two hyper-parameters H and r, we can
obtain a wide range of scenarios in the generated propa-
gations. Also, we aim at defining the relationship between
hyper-parameters and the obtained properties in a clear, in-
terpretable way.

To show this we need to define the macroscopic properties
of the generated cascades being measured. To characterize
the generated cascades, in fact, we choose the following two
properties:

1. Average cascade size. The average number of activated
nodes across all items:

1 )

i >N A,

icl veV
where A(i,v) = 1 if v adopted item ¢ and 0 otherwise.

2. Average cascade depth. The number of time steps be-
tween the last and the first activation of our model. This
can also be seen as the depth of the propagation cascade,
as in WOMG there are new activations at each timestamp,
and the first timestamp in which there are no activations
represents the end of the cascade.

Our goal is to show that in each configuration we can tune
the resulting properties of the data through our two param-
eters. Therefore we run our model on a fixed graph (gener-
ated according to (Klemm and Eguiluz 2002)) of N = 200
nodes, with £ = 10, and we varied H and r for each of the
four configurations.

Results. Results are reported in Figure 3. These results show
how one can obtain any wanted value for the macroscopic



properties we measure under any configuration by changing
the two hyper-parameters of the model H and r. In particu-
lar, we observe the following:

e The relationship between the virality-resistance (defined
by r) and the cascade size is very clear under each config-
uration: lower virality-resistance leads to larger cascades.
This follows intuition and provides an easy way to control
the obtained cascade size.

e Homophily have a clear cut effect on cascade size, and the
relation appears to be monotonic: lower homophily leads
to larger cascades; higher homophily leads to smaller cas-
cades. This can be explained by noting that when the in-
terests are distributed among nodes following homophily,
the phenomenon of echo chambers arises. Inside echo
chambers, an item will usually attract only nodes inside
the echo chamber that it is interested to it, stopping as
soon as it reaches the barrier. Hence, cascade sizes are
limited.

e With propagation by interest, cascades tend to collapse
on a few initial time steps—a bursty dynamics. Since the
spreading depends only on individual interests, items can-
not reach nodes that are far in the topic space. The differ-
ent activation settings, instead, produce a divergence in
the cascade size curves. In fact, for the exogenous config-
uration, cascades can collapse on a few initial time step
when the virality resistance is low, otherwise they can
reach a great depth when r is high. For the endogenous
activation, instead, cascade depths are mostly stable.

e Symmetrically, while viralities affect more cascade size,
they do not seem to have a profound effect on cascade
depth. However, we can note that (a) in the exogenous ac-
tivation, lower virality-resistance leads to short cascades:
the bursty dynamics is amplified. All nodes get stimulated
by the environment, and they all get activated as soon as
they receive a viral item from it. Instead, when (b) the ac-
tivation is endogenous, in a low virality-resistance setting
(with influence-driven propagation) items spread along
longer cascades. A node creates a viral content and this
content is able to slowly reach far nodes in the network.

These observations, firstly, confirm that our model is able
to reproduce a wide range of scenarios. It can be used with
different assumptions on the spreading of items in the net-
work. For each set of assumptions, its two main hyper-
parameters (virality and homophily) allow to calibrate the
macroscopic properties of the generated propagations. Sec-
ondly, these observations also show how our model can
be used to better understand how phenomena such as echo
chambers, viral contents, information spread behave.

5.3 Real data

In this section, we show how our model can be used to pro-
duce synthetically a data set similar to a given one (RQ3).
For this experiment, we take a real-world propagation data
set known as Digg 2009 (Lerman and Ghosh 2010). From
this data set, we keep in the graph only the nodes with at
least 100 activations; after this filtering step, we also remove
singletons from the network. The resulting data set has 3482
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nodes and 64519 edges (average degree 18.5). The number
of items is 3553 as the original data set.

We considered the graph as input of our model and we
compared the real cascades and the synthetic ones, derived
as WoMG’s outputs. From now on, we refer to the cascades
extracted from the real dataset as Digg 2009 cascades, and
to the cascades generated by WoMG as WoMG cascades.

Metrics. Since the time scale of Digg 2009 cascades is not
comparable to the time scale of the synthetic propagations
produced by WoMG cascades, we look only at the structure
of the cascades. For this, we represent the cascades as di-
rected acyclic graphs (DAGs). Given the sequence of nodes
activations, the edges are created w.r.t. the temporal order.
That is, a directed edge (u,v) will belong to the DAG; of
an item 4, if (1) the edge (u, v) exists in the social graph (so
that v has visibility of u’s activity) and (2) u activated on ¢
before v — so that v can see u’s activation on ¢ and be influ-
enced, or in other terms, the item ¢ can propagate from u to
v. More formally, the nodes of the D AG; of an item ¢ are all
the nodes that activated on that item; its edges are:

EDAGi = {V(U,U) € Fq: tz(u) < ti(U)}

Then, we can define the depth of a cascade ¢ as the diam-
eter of its DAG;:

12)

depth, = max

dpac, (u,v)
dDAG,i (u,’u)<oo

where dpag,(u,v) is the distance between v and v on
DAG;.

Therefore, we look at these two metrics of a propagation
data set: the size and the depth of its cascades. To better
characterize the shape of cascades, we also look at the ra-
tio between its size and its depth: a large size-to-depth ratio
corresponds to “flat” cascades, with many nodes activating
after a small set of influential nodes; a small size-to-depth
ratio corresponds to “tall” cascades, with nodes activating
one after the other in long chains.

Experimental setting. We choose the model configura-
tion based on the data set semantics: an activation in this
data set corresponds to a user voting a story on the social
bookmarking website Digg. Users can see stories from their
neighbors or from an external source: because of this, we
choose the exogenous activation setting. Since users might
have different influencing capabilities, we choose the prop-
agation by influence configuration accordingly; for the influ-
ence capabilities, we draw each p,, at random from a Pareto
distribution with exponent 2.

On this data set, external sources play a large role: nodes
often activate without any of their neighbors activating be-
fore. For this reason, we set a large value (12.0) for the in-
fluence capability p, of the dummy node representing the
external environment.

Our hypothesis here is that our model allows to shape
the resulting cascades by tuning the parameters we studied
before, i.e. the virality of the items and the homophily of
the interests of the nodes. In particular, we wish to discover



10

<
= ) &
Q 6 s -
[ T——— ..
o ® 3 e00 o
[J] = Y 'S
2 .9 @ @ .%»..
o e
] (]
8 4 [ ) b o0 &
® é® o
00%” o0
. ° ° (X ]
4 .
o e Y e Homophily: 0.0
2 e Homophily: 0.5
L e Homophily: 1.0
o @ Realdata

100 200 300

Cascade size

400 500 600

100

Real data

Virality exponent: 25.0
Virality exponent: 5.0
Virality exponent: 50.0

90

80

70

60

Cascade size / Cascade depth

50

40

Homophily: 0.0 Homophily: 0.5 Homophily: 1.0
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whether by tuning these two parameters we are able to gen-
erate a data set that is similar to the given one.

To do so, we chose three values for the virality exponent
(5, 25 and 50) and three values for the homophily parameter
H (0, 0.5, 1). For each of these 9 parameter settings, we
realize 6 different experiment with 200 items each. In each
experiment, we generate a different set of interests and of
items at random.

Results. To analyze results, we first directly compare the
average values for our metrics (cascade depth and size) on
the generated data set against their real distribution. This is
shown in Figure 4 (left). From this plot, we show how the
parameter settings are able to obtain a variety of different
cascade depth and cascade size, that largely overlap with the
real distribution.

In particular, the effect of homophily is essential to
change the cascade shape: a low homophily corresponds
to flat cascades — large size and low depth — while a high
homophily leads to fall cascades. This confirms previous
experiments and respect the intuition that in environments
with highly specialized communities the propagation fol-
lows longer paths; instead, if the links between nodes do
not follow their interests, the propagation is mostly driven
by the virality of the items, obtaining flat cascades.

The real data set average is close to the high homophily
setting: we can therefore conjecture that on this data set,
users follow each other mostly as a consequence of common
interests. The role of the homophilic interests generation is
therefore very important to achieve realistic results. In addi-
tion, to reach even closer results, further research would be
needed to generate even more homophilic interests on a real
given social network.

To investigate the shape of the cascades obtained by our
model against real data, we analyze in detail how the size-
to-depth ratio changes in the different parameter settings. In
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Figure 4 (right), we report the ratio obtained by each setting,
along with the real average value of Digg 2009 cascades.
Here, it is clear that the homophily plays an important role
in shaping the cascades. This figure also confirms how the
setting that most closely reproduces the Digg 2009 cascades
corresponds to a high virality and a high homophily.

5.4 Propagations from real documents

We also used a real corpus of documents to produce a topic
distribution of items and to check if similar items in the topic
space produce cascades with similar set of nodes. In princi-
ple, since nodes have different interests and these depend
on the topics, similar items in the topic space should acti-
vate similar sets of nodes. We considered the Associated
Press data set: a corpus of 2246 document with a vocabu-
lary of 10473 terms (Harman 1992). We inferred the topic
distribution of each item using LDA (Blei, Ng, and Jordan
2003) model with 4 topics, and we generated a cascade for
each item of the corpus on a synthetic graph created accord-
ing to the generative model presented in section ”Generat-
ing interests” (Klemm and Eguiluz 2002) (N = 500 nodes
and M = 1000 edges, a probability @ = 0.01 of rewiring).
We set the parameters of WOMG to homophily = 0.5 and
virality — exponent = 32 and we collected the sets of ac-
tivated nodes.

For each pair of items we measure the cosine similarity
of their topic distribution, and the Jaccard similarity of their
set of activated nodes. In Figure 5, for each pair of items we
plot the cosine similarity of the pair in the x-axis and the
Jaccard similarity on the y-axis. Darker colors correspond to
more nodes activated in WOMG on at least one of the two
documents (minimum 2 and maximum /N = 500).

The plot shows that items that are close in the topic space
(i.e., cosine similarity greater than 0.5), have an average Jac-
card similarity statistically greater than those with lower co-
sine similarity. We can observe that few items with high vi-
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N = 500). We note that there is a linear relationship be-
tween the topic similarities and the Jaccard similarities, al-
beit some documents were highly viral and were propagated
by most nodes in the graph, resulting in a high Jaccard sim-
ilarity despite having different topics.

rality activate almost the whole of the 500 nodes and as such,
when paired, these items result to have Jaccard close to 1, re-
gardless their distance in the topic space.

6 Conclusions and Future Work

We presented WOMG, a model for the synthetic generation
of information cascades in social media. In our model the
memes propagating in the social network are characterized
by a probability distribution in a topic space, accompanied
by a textual description. Similarly, every individual is de-
scribed by a vector of interests defined over the same topic
space. Information cascades are governed by the topic of the
meme, its level of virality, the interests each node, commu-
nity pressure, and social influence. By adjusting a small set
of interpretable hyper-parameters our model can tune the
macroscopic characteristics of the generated data and ob-
tain realistic propagations and interests for a given network
structure and topic model.

In our future work we plan to extend WoMG in several
directions and specializations. The first extension is towards
the analysis of how information propagation and debates on
social media may affect people’s opinion, strengthening or
weakening echo-chambers, possibly leading to stronger po-
larization or cyberbalkanization (Chan and Fu 2017). This
requires assigning to memes and to each person, besides top-
ics, a polarity or an opinion, and integrating the propagation
model with an opinion dynamics model. The second exten-
sion deals with the veracity of the information propagating
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in the network. The idea is to have different generative mod-
els for fake and genuine memes, as well as different ten-
dency for users to spread or block the propagation of fake
memes. By studying how high virality memes interact with
the different echo chambers, we could understand more on
the mechanisms of misinformation spreading and designing
mitigation strategies.
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